

NATIONAL CENTER FOR SUSTAINABLE TRANSPORTATION TECHNOLOGY (NCSTT)

Vehicle Safety Status In Indonesia

Presenter: Sigit P. Santosa

ASEAN AUTOMOBILE SAFETY FORUM AASF 2018

AGENDA

- NCSTT Introduction

- WHO Data on global accident

- Indonesian accident data
- Accident investigation and resolution
- Modeling and Validation

NATIONAL CENTER FOR SUSTAINABLE TRANSPORTATION TECHNOLOGY

NCSTT

CCR Sustainable Electric Based Transportation Technology Development

- ☐ Funding: USAID / SHERA Program (2017-2021)
- Host: NCSTT ITB National Center for Sustainable Transportation Technology
- ☐ University Partners (Indonesia):
 - University of Diponegoro (UNDIP)
 - 2. University of Sriwijaya (UNSRI)
 - 3. University of Lambung Mangkurat (UNLAM)
 - 4. Institute Technology Kalimantan (ITK)
 - 5. State University of Sebelas Maret (UNS)
 - 6. University of Sam Ratulangi (UNSRAT)
- US Partner: MIT Cambridge, MA
 - 1. MIT Profesional Development
 - 2. MIT Impact and Crashworthiness Laboratory/Battery Consortium

CCR Objective

- ☐ Develop an integrated transportation system that can support economic growth in Indonesia
- Acquire and implement advanced technologies for the next generation of electric based transportation within a sustainable innovation ecosystem:
 - Motor & RESS (Reserved Energy Storage System) Technologies
 - Light weight vehicle structures for personal car and urban mass transport (PRT, LRT)
 - Static & dynamic charging infrastructures for vehicle electrification
 - Transit oriented development (TOD)
 - Safety and Crashworthiness of electric based vehicles
 - Implementation policy, standard, and certification

Background

舆

PROBLEM: Un-sustainable Transportation in Indonesia

- > High traffic jam, polution, dependence on fossil fuel
- ➤ Transportation system in Indonesia cannot support national economic development. In Jakarta → Rp. 31 T (USD 2B) economic losses/ year. NCSTT Study in 2017.

CHALLENGES: Electric Vehicle Revolution in 2025

- > Fuel Economy Regulation of 56.5 MPG (Mile Per Gallon) started in 2025
- > The electric based transportation will be the solution wrt cost & regulation
- > Global electric vehicle proliferation strategy In Indonesia will need to be addressed

OPPORTUNITIES: Indonesian Transport Expansion Plan in 2030

- ➤ Indonesian market for passenger vehicles will increase from 1.4 million to 4 million.
- ➤ New urban railways system of 3800 km will require 12,000 new passenger coaches will be needed (RIPNAS).

Selection of Technology

Electric based transportation system is selected due to the fact:

- ☐ Current powertrain with combustion engines already reached optimum performance.
- Performance Improvement can only be achhieved by:
 - 1. Lightweight vehicle technology
 - 2. Aerodynamic exterior to achieve low coefficient of drag (C_D)
- ☐ Transitioning from combustion engine to electric motor:
 - 1. Hybrid electric/gasoline engine
 - 2. Extended range electric vehicle (EREV) technology to relieve driver "anxiety" due to limited energy availability of battery
 - 3. Full electric motor when the charging infrastructure is common

Collaboration and research implementation plan

In order to create focus research innovation, acticities for product innovation priorities in the CCR are:

- Battery integrity/safety system
- Electric bus for student/faculty shuttle transportation
- e-Trike: Electric vehicle for postal delivery
- > Light Rail Transit/LRT (Kereta Kapsul) for urban transport in Jakarta and Bandung
- > infrastructure development, static/dynamic induction charging system

Research Collaboration on Li-Ion Battery - NCSTT-MIT

Vehicle Safety In Indonesia

舆

Number of Vehicles in Indonesia

World Traffic Fatalities

Source: WHO - Global status report on road safety 2015

甴

Fatality per 100k Population in Indonesia 2010 – 2016

Source: http://www.korlantas-irsms.info/graph/accidentDa

Traffic Fatality: US, EU, Indonesia

Accident investigation by KNK1 2007-2018

KNKT INVESTIGATION: Type of Accident

舆

Rollover Accident in Indonesia

典

Rollover Accident: Bus Rukun Sayur, Palikanci (2015)

Fatality = 11, Severe Injury (AIS > 3) = 12, Light Injury (AIS < 3) = 30

GLOBAL REGULATION ROLLOVER

ROOF CRUSH REQUIREMENTS:

I. UNECE R66. (EU): Energy Method

Energy absorbed during deformation up to the residual space > 75% potential energy

$$E_{min} = 0.75 M g \Delta h$$

2. FMVSS 216. (US): Force Method

Reaction force of the rigid platten > 1,5 x GVW prior reaching 127 mm displacement

3. UNECE R66: Rollover Bus

REQUIREMENT: Structural intrusion does not exceed the safety zone

Bus Superstructure Modeling

Roof Crush Modeling

Rollover Modeling

Strategic Reinforcement

- 1) Gusset reinfrocement at the roof-wall-floor joints
- 2) Optimized gusset alignment (40-55 deg)
- 3) Staggered reinforcement
- 4) Vertical pillar must be continuous

Numerical Results

		With Strategic Reinfrocement
UNECE R66 No Passenger	V	V
UNECE R66 47 Passengers	X	V
UNECE R66 59 Passengers	X	V
FMVSS 216 No Passengers	X	V
FMVSS 216 47 Passengers	X	V
FMVSS 216 59 Passengers	X	V
Rollover 47 Passengers	V	V
Rollover 59 Passengers	X	V

舆

Physical Test – Laksana Bus

☐ Validated the Numerical Simulation Model

Courtesy: LAKSANA

THANK YOU

輿

Introduction

